
A Parallel Multithreaded Sparse Triangular Linear
System Solver

İlke Çuğua, Murat Manguoğlua,∗

aDepartment of Computer Engineering, Middle East Technical University, 06800 Ankara,
Turkey

Abstract

We propose a parallel sparse triangular linear system solver based on the Spike
algorithm. Sparse triangular systems are required to be solved in many appli-
cations. Often, they are a bottleneck due to their inherently sequential nature.
Furthermore, typically many successive systems with the same coefficient ma-
trix and with different right hand side vectors are required to be solved. The
proposed solver decouples the problem at the cost of extra arithmetic operations
as in the banded case. Compared to the banded case, there are extra savings
due to the sparsity of the triangular coefficient matrix. We show the parallel
performance of the proposed solver against the state-of-the-art parallel sparse
triangular solver in Intel’s Math Kernel Library (MKL) on a multicore archi-
tecture. We also show the effect of various sparse matrix reordering schemes.
Numerical results show that the proposed solver outperforms MKL’s solver in
∼ 80% of cases by a factor of 2.47, on average.

Keywords: sparse triangular linear systems, direct methods, parallel
computing
2010 MSC: 65F05, 65F50, 65Y05

1. Introduction

Many applications of science and engineering require the solution of large
sparse linear systems. One well-known approach is to solve these systems by
factorizing the coefficient matrix into nonsingular sparse triangular matrices
and solving the resulting sparse triangular systems via backward and forward5

sweep (substitution) operations. This can be considered as a direct solver or
if incomplete factorization is computed, it is part of the preconditioning in an
iterative scheme. Common sparse factorizations that require the solution of
sparse triangular systems include: LU, QR factorizations and their incomplete

∗Corresponding author
Email address: manguoglu@ceng.metu.edu.tr (Murat Manguoğlu)
URL: www.ceng.metu.edu.tr/~manguoglu (Murat Manguoğlu)

Preprint submitted to Computers and Mathematics with Applications August 23, 2019

counterparts (incomplete LU and incomplete QR). Furthermore, Gauss-Seidel10

and its variants such as Successive Over Relaxations (SOR) and Symmetric
SOR, require the solution of a sparse triangular system at each iteration.

For large problems, solution of linear systems is often the most time con-
suming operations and in parallel computing platforms solution of triangular
systems is known to scale worse than the factorization stage. They are often a15

sequential bottleneck due the dependencies between unknowns during forward
and backward sweeps. Therefore, scalable parallel algorithms for solving sparse
triangular linear systems are needed. Currently, there are many sparse triangu-
lar solver implementations available as standalone functions or within LU/ILU
factorization software. The amount of interest in sparse triangular solvers is20

tremendous which is also seen by the number of available software packages.
These include Euclid [1], Aztec [2], The Yale Sparse Matrix Package [3], Su-
perLU [4], HYPRE [5], PARDISO [6], PETSc [7], MUMPS [8], UMFPACK [9],
PSBLAS [10], and PSPASES [11]. Along with the software packages, paral-
lel triangular solvers are extensively studied in the literature for both MIMD25

(Multiple Instruction, Multiple Data) and SIMD (Single Instruction, Multiple
Data) architectures. Most studies are focused on either level-scheduling [12, 13]
or graph-coloring [14] algorithms. Level-scheduling algorithm is optimized for
General Purpuse Graphical Processing Units (GPGPU) in [15, 16, 17], and for
Central Processing Units (CPU) in [18, 19, 20, 21, 22]. Compared to level-30

scheduling, graph coloring is an NP-complete problem, therefore heuristics used
for coloring may vary among the parallel solver implementations. Nevertheless,
this idea is the basis for the solvers proposed in [23, 24] for GPGPUsmakes it
also a considerable option for PSTRSV., and in [25, 26, 27] for CPUs. Apart
from these two algorithms, in [28] a synchronization free algorithm on GPGPUs35

to overcome the barrier synchronization is presented by the level-scheduling
and the analysis stage required to discover the underlying parallelism. In [29]
a solver tailored for the sparsity structure arise in sparse Cholesky and LU fac-
torizations is proposed, in which both dense and sparse solvers are utilized and
assigned to different parts of a given triangular system. In [30] iterative solvers40

such as Jacobi and Block-Jacobi are proposed for solving sparse triangular sys-
tems with increased parallelism in exchange for a direct solution. On the other
hand, several studies [31, 32, 19, 20, 33, 25, 34, 27] are focused on reordering
the coefficient matrix beforehand to increase the available parallelism. In addi-
tion, [35, 31, 32, 36, 22] are focused on the effect of data layout on parallel sparse45

triangular system solver performance. Nevertheless, in all existing triangular
solvers parallelism is limited by the inherited dependency in backward/forward
sweep operations.

In this study, we propose a Spike [37] based parallel direct sparse triangular
system solver. We implement the proposed algorithm for multicore shared ad-50

dress space architectures. The Spike algorithm is originally designed for banded
linear systems [38, 39, 40, 41] and generalized for sparse linear systems first as
a solver for banded preconditioner [42, 43] and later as the generalization of the
banded spike algorithm for general sparse systems [44, 45, 46]. Furthermore,
the banded Spike algorithm was implemented for GPU [47] and Multicore [48]55

2

Figure 1: The sparse triangular linear system of Ux = b

architectures. Our work expands the algorithm for the sparse triangular case
which differs significantly from the original banded triangular case. The con-
currency available for the proposed solver is tightly coupled with the sparsity
structure of the coefficient matrix. Hence, we also employ matrix reordering to
improve parallelism, and use five well-known methods which are METIS [49, 50],60

Approximate Minimum Degree Permutation (AMD) [51], Column Permutation
(ColPerm) in Matlab R2018a, Nested Dissection Permutation (NDP) [52, 53],
and Reverse Cuthill-McKee Ordering (RCM) [53] in the experiments.

We describe the proposed parallel algorithm for the solution of sparse trian-
gular linear systems in Section 2. Then, we analyze the performance constraints65

of the preprocessing and the solution stages in Section 3. Performance compar-
ison of the proposed method and the parallel solver of Intel MKL is given in
Section 4, and we conclude in Section 5.

2. Algorithm

The objective of the proposed algorithm is to solve sparse lower or upper
triangular systems of equations in parallel. Without loss of generality assume a
systems of equations is given,

Ux = b (1)

where U ∈ Rn×n, full-rank, sparse upper triangular matrix. b and x are the70

right hand side and solution vectors, respectively.
The proposed parallel algorithm is based on the parallel Spike scheme in

which the coefficient matrix is factorized into block diagonal matrix and the
spike matrix. We refer the reader to the references in Section 1 for a more
detailed description of the general and banded Spike factorizations.75

In our case, the coefficient matrix is triangular and sparse. Hence, we have
the following Spike factorization

U = DS (2)

3

where D is block triangular with diagonal blocks that are also sparse and upper
triangular, and S (illustrated in Figure 2) is upper triangular with identity
main diagonal blocks and some dense columns (i.e. the spikes) in the upper
off-diagonal blocks only. Given the linear system in Eq. 1 and the factorization
in Eq. 2, the proposed algorithm can be described as follows. Assume that we
multiply both sides of Eq. 1 with D−1 from left and obtain,

D−1Ux = D−1b. (3)

Then, since
S = D−1U, (4)

we obtain the following modified system which has the same solution vector as
the original system in Eq. 1,

Sx = g (5)

where
g = D−1b. (6)

Note that obtaining the modified system is perfectly parallel in which there is
no communication requirement. The key idea of the Spike algorithm is that the
modified system contains a small reduced system (which does not exist in the
original system in Eq. 1) that is independent from the rest of the unknowns.
After solving this smaller reduced system, the solution of the original system80

can be also retrieved in perfect parallelism. The Spike algorithm was originally
designed for the parallel computer architectures where the cost of arithmetic
operations are much lower than the cost of interprocess communication and
memory operations [39]. Today’s multicore parallel architectures can perform
arithmetic operations an order of magnitude faster, and this trend is not likely85

to change in the near future. Therefore, the arithmetic redundancy cost can be
easily amortized and this observation is also valid for the sparse triangular case.

Now, we illustrate the proposed algorithm on a small (13×13) system given
(without numerical values of nonzeros) in Figure 1. Given a partitioning of the
coefficient matrix, we also partition the right hand side and the solution vectors,
conformably. Next, we extract the block diagonal part of the coefficient matrix,
such that,

U = D +R (7)

where R contains the remaining nonzeros in the off-diagonal blocks. For the
small example this is illustrated in Figure 3. In general, D is in the form of

D =


D1

D2

. . .

Dt

 (8)

where t is the number of partitions (or threads) and each Di is a separate
independent mi ×mi triangular matrix.

4

Figure 2: An example structure of the S matrix. The blue elements are from the original
matrix where the orange ones represent the ”spikes” resulted from D−1U

The modified system in Eq. 5 contains a smaller independent reduced system,

Ŝx̂ = ĝ (9)

where x̂ corresponds to the dependencies in the original system (Figure 4).90

We define ith block row (Ri) as follows,

Ri =
(
0, .., 0, Ri,i+1, Ri,i+2, ..., Ri,t

)
. (10)

Furthermore, after identifying the bottom zero rows of Ri (if they exist), we
define R̂i as follows,

Ri =

(
R̂i

0

)
(11)

where the size of R̂i is ki × n with ki ≤ mi. Note that ki is determined by
the sparsity structure of Ri. R̂i determines the dependencies in partition i to
other partitions if ki 6= 0. Otherwise, the unknowns belonging to partition i are
completely independent. Using Eq. 1 and 7 we obtain the following system,

Dx = b−Rx (12)

where only those elements of x that are corresponding to nonzero columns of
R are needed to compute the right hand side. We denote these elements of R
in the nonzero columns as dependency elements. In fact, the reduced system in
Eq. 9 can be formed by identifying the unknowns in x required by the dependency
elements. Hence, for most cases both S and g only need to be computed partially95

(i.e. only Ŝ and ĝ are needed). After solving the reduced system in Eq. 9, we
update the right hand side of the system in Eq. 12 and solve it. Note that this
last step involves solving independent triangular systems of equations since,
unlike the original system, problem is decoupled now.

An important point is that after computing g in Eq. 6, some elements in
x are already available without any further computations. This happens when

5

Figure 3: The illustration of D + R = U

Figure 4: Construction of the reduced system

6

Figure 5: The illustration of light beams as dependency mappings.

ki < mi. If we split Di matrix into two parts with respect to ki, then the
sub-matrix below the ki will not have any corresponding dependency elements.

In other words, let us denote the lower sub-matrix as D
(b)
i from now on, the

solution of
D

(b)
i g

(b)
i = b

(b)
i (13)

directly gives the partial solution of the original system. Hence,

x
(b)
i = g

(b)
i (14)

We further partition the upper part of gi into two vectors with respect to a
parameter we call ”the reflection”, ri. If we think dependency elements as light
sources sending light beams towards the bottom of the matrix and the diagonal
as a mirror, then we can model the dependencies in a nonsingular triangular
system as reflections of these light beams. These reflections are illustrated in
Figure 5 and indicated as red arrows. The topmost arrow for each partition
is selected as the reflection ri and it shows the upper bound for the necessary
part of each Si matrix that we have to calculate to be able to form the reduced
system Ŝ. Specifically, for

gi =

 g
(t)
i

g
(m)
i

g
(b)
i

 ri − 1
ki − ri + 1
mi − ki

(15)

where ri ≤ ki, we do not need to make any calculations for g
(t)
i vectors to100

construct Ŝ. In addition, if ri > ki, then x̂i = ĝi since there is no ”spike”
within the range of row indices [ri,mi]. Our implementation takes ri = ki when
ri > ki for simplification. If there is no reflection in the given partition, we set
hasReflectioni parameter as false and deem further partitioning of Di (Eq. 16)
as unnecessary.105

7

Exploiting these properties saves us from recomputing x
(b)
i and redundant

operations with g
(t)
i . Therefore, we partition each Di where hasReflectioni is

true as:

Di =

D
(t)
i Qi P

(t)
i

D
(m)
i P

(b)
i

D
(b)
i

 , D
(t;m)
i =

(
D

(t)
i Qi

D
(m)
i

)
, D

(m;b)
i =

(
D

(m)
i P

(b)
i

D
(b)
i

)
(16)

conformable with the partitioning of gi vectors.
With these further partitions at hand, now, we can see that ĝi can be ob-

tained via the solution of

D
(m;b)
i g

(m;b)
i = b

(m;b)
i (17)

In detail, we select the elements of g
(m;b)
i , which are computed using the elements

in b
(m;b)
i that are hit by a light beam as in Figure 5, to form ĝi. Then we solve

the reduced system and update the corresponding elements in x.

Ŝx̂ = ĝ

x← x̂
(18)

Then, we compute the new right-hand side vector for the independent triangular

systems of D
(t;m)
i partitions:

b
(t;m)
i := b

(t;m)
i − (R̂ix+ Pix

(b)
i) (19)

where

Pi =

(
P

(t)
i

P
(b)
i

)
. (20)

The last step is to solve the isolated systems using the updated right-hand

side without recomputing x
(b)
i :

D
(t;m)
i x

(t;m)
i = b

(t;m)
i (21)

In order to achieve better load-balance, even if we do not have a reflection
at a given partition (i.e. hasReflectioni = false), we can still partition Di with
respect to ki. Hence, we can solve Eq. 13 instead of waiting for idle while other
threads are solving Eq. 17. However, we do this only if the performance drop
in Eq. 17:

λ
(1)
old = max{nnz(D(m;b)

i)|i ∈ {1, ..., t}, hasReflectioni}

λ
(1)
additional = max{nnz(D(b)

i)|i ∈ {1, ..., t},¬hasReflectioni}

loss(1) = max(0, λ
(1)
additional − λ

(1)
old)

(22)

8

is smaller than the overall gain in Eq. 19 and Eq. 21:

λ
(2)
old 1 = max{nnz(R̂i) + nnz(Di)|i ∈ {1, ..., t},¬hasReflectioni}

λ
(2)
old 2 = max{nnz(R̂i) + nnz(Pi) + nnz(D

(t;m)
i)|i ∈ {1, ..., t}, hasReflectioni}

λ
(2)
old = max(λ

(2)
old 1, λ

(2)
old 2)

λ(2)new = max{nnz(R̂i) + nnz(Pi) + nnz(D
(t;m)
i)|i ∈ {1, ..., t}}

gain(2) = max(0, λ
(2)
old − λ

(2)
new)

(23)
We add a small constant into the inequality and form the condition as:

gain(2) > loss(1) + ε (24)

If the condition in Eq. 24 is met, we proceed with the further partitioning of
the Di matrices for the threads with no reflection to improve the load-balance.
In the implementation, we indicate this by setting isOptimized i parameter of
a relevant thread as true. If Ri is an empty matrix, in other words ki = 0,110

for thread i, then we select the best cut αi preserving the condition in Eq. 24
and set ki = αi. Note that we split the operations into the preprocessing and
solution stages such that any operation that does not require the right hand side
vector, b, constitutes the preprocessing stage. Remaining operations constitute
the solution stage. This splitting is useful when multiple systems with the same115

coefficient matrix but different right hand side vectors are solved repeatedly,
which is often the case in practice. The solution stage of PSTRSV is given in
algorithm 1.

3. Performance constraints

In this section, we present key parameters that influence the performance120

of the proposed algorithm. These parameters are ri, ki, and the number of
nonzeros in Ŝ. We analyze the performance for the preprocessing and solution
stages separately.

3.1. Preprocessing

In preprocessing stage, we handle operations that are independent from the125

right hand side vector. This splitting is useful when it is used in an iterative
scheme, preprocessing is done only once and the solver is often called multiple
times. Hence, the cost of the preprocessing can usually be amortized. The
operations involved in the preprocessing stage are the partitioning of Di and
Ri, computing Si parts when necessary, building the reduced system, and in-130

vestigation for a better load-balance. Among these, memory allocation and the
computation required for Si are the most significant performance bottleneck for
the test matrices in the preprocessing time.

9

Algorithm 1 PSTRSV

Input: Partitioned and factored coefficient matrix U = DS, reduced coeffi-
cient matrix Ŝ, together with associated dependency information and b, the
right-hand side vector
Output: x, solution vector of Ux = b
for each thread i = 1, 2, ..., t do
if hasReflectioni or isOptimizedi then

Solve the triangular system D
(m;b)
i g

(m;b)
i = b

(m;b)
i for g

(m;b)
i

end if
Wait until all threads reach this point
for a single thread i do

Solve the reduced system Ŝx̂ = ĝ for x̂
Update the solution vector x← x̂

end for
Wait until all threads reach this point
if hasDependencei then

b
(t;m)
i := b

(t;m)
i − (R̂ix+ Pix

(b)
i)

end if
if hasReflectioni or isOptimizedi then

Solve the triangular system D
(t;m)
i x

(t;m)
i = b

(t;m)
i for x

(t;m)
i

else
Solve the triangular system Dixi = bi for xi

end if
end for
return x

Figure 6: The dependencies which are present in the original system. We only need to compute
the parts highlighted in red in order to construct the reduced system.

10

We only need the nonzeros of Si within the range of row indices [ri, ki] to
build the reduced system (Figure 6). In Eq. 4, S has the following structure:

Si =
(
0, ..., 0, I, Si,i+1, Si,i+2, ..., Si,t

)
. (25)

If we ignore preceding zero blocks, we get

Ŝi =

 I S̄
(t)
i

I S̄
(b)
i

I 0

 (26)

conformable with the partitioning of gi and Ri. In other words,

Si =
(
0, Ŝi

)
(27)

Then, we can compute S̄i by solving

D
(t;m)
i S̄i = R̄i (28)

where

S̄i =

(
S̄
(t)
i

S̄
(b)
i

)
, R̂i =

(
0, R̄i

)
(29)

Note that Eq. 28 is a triangular system with multiple right hand side vectors,

R̄i. However, we do not need to compute S̄
(t)
i since it has no contribution to

the reduced system. Therefore, we only solve a part of the system which is
represented by the following equality,

D
(m)
i S̄

(b)
i = R̄

(b)
i (30)

where

R̄i =

(
R̄

(t)
i

R̄
(b)
i

)
(31)

In the implementation, we transform R̄
(b)
i into a dense matrix containing

only columns with at least one nonzero since S̄
(b)
i is expected to have dense135

spikes. We denote them as R̄
(b)
densei

and S̄
(b)
densei

respectively. Let di be the

number of columns in Ri having at least one nonzero. Then, S̄
(b)
densei

is a
(ki − ri + 1) × di dense matrix which is computed only if ri ≤ ki. In other
words, for a matrix where ri > ki,∀i ∈ {1, 2, ..., t} there is no memory allo-

cation or computational cost for R̄
(b)
densei

and S̄
(b)
densei

matrices. Naturally, this140

also holds if di = 0,∀i ∈ {1, 2, ..., t} since having no dependency element is the
ideal scenario for parallelism. Nevertheless, it is still beneficial to have a rel-
atively small value of max{ki − ri|i ∈ {1, 2, ..., t}} for di 6= 0 considering the
dense structure of the spikes. In addition to the mathematical dynamics, for
maximum performance in practice, instead of creating large parallel tasks by145

11

distributing S̄
(b)
densei

computations (Eq. 30) to t threads, we split each S̄
(b)
densei

to
t column-based partitions and leverage parallelism at this level. In other words,

we sequentially iterate through S̄
(b)
densei

computations and split each one to cre-
ate t smaller parallel tasks to improve the overall preprocessing performance.
This approach combines coarse grained partitioning with fine grained process-150

ing, hence it is suitable for multilevel cache hierarchies of modern multicore
architectures.

3.2. Solution

In the solution stage, we have two parallel regions and a sequential region
(Eq. 18) between them. We can optimize the performance of these two parallel155

regions using the load-balance strategy explained in Section 2. This leaves us
with Eq. 18 where we solve the reduced system and update the solution vector.

The coefficient matrix Ŝ of the reduced system is a d×d unit diagonal sparse
triangular matrix where d is at most the sum of all di explained in Section 3.1:

d ≤
t∑

i=1

di (32)

since di values through partitions may contain duplicated columns. Solving
the reduced system takes O(nnz(Ŝ) − d) operations. Again, for di = 0,∀i ∈
{1, 2, ..., t} there is no reduced system, so we have perfect parallelism. However,
for most cases where d 6= 0, the sparsity structure of U determines the number
of off-diagonal nonzeros in Ŝ. For a matrix where ri > ki,∀i ∈ {1, 2, ..., t}, Ŝ is
the identity matrix. Hence, there is no need to solve the reduced system,

Ŝ = I, when ri > ki,∀i ∈ {1, 2, ..., t}
Ix̂ = ĝ from Eq. 9

x̂ = ĝ

(33)

and if we directly store gi vectors in xi parts before forming ĝ, then there is
no memory operation for updating the solution vector either. If ri ≤ ki,∃i ∈
{1, 2, ..., t}, then the computational cost will be determined by the sparsity160

structure of the dependency elements within the range of row indices [ri, ki].

4. Numerical results

We perform numerical experiments to demonstrate the parallel scalability
of the proposed algorithm against the multithreaded double precision sparse
triangular system solver (mkl sparse d trsv) of Intel MKL 2018 [54]. Hereafter,165

we refer to them as PSTRSV and MKL, respectively. We have obtained twenty
real-world test matrices from the SuiteSparse Matrix Collection [55] that arise
in variety of application areas and have a variety of dimensions/nonzeros (see
Table 1 for properties and the application domains that they arise in).

12

Matrix Dimension(n) Non-zeros(nnz) Application

1. Dubcova2 65, 025 1, 030, 225 2D/3D Problem
2. Dubcova3 146, 689 3, 636, 643 2D/3D Problem
3. FEM 3D thermal1 17, 880 430, 740 Thermal Problem
4. G3 circuit 1, 585, 478 7, 660, 826 Circuit Simulation
5. apache2 715, 176 4, 817, 870 Structural Sim.
6. bmwcra 1 148, 770 10, 641, 602 Structural Problem
7. boneS01 127, 224 5, 516, 602 Model Reduction
8. c-70 68, 924 658, 986 Optimization
9. c-big 345, 241 2, 340, 859 Optimization
10. consph 83, 334 6, 010, 480 2D/3D Problem
11. ct20stif 52, 329 2, 600, 295 Structural Problem
12. ecology2 999, 999 4, 995, 991 2D/3D Problem
13. engine 143, 571 4, 706, 073 Structural Problem
14. filter3D 106, 437 2, 707, 179 Model Reduction
15. finan512 74, 752 596, 992 Economic Problem
16. parabolic fem 525, 825 3, 674, 625 Fluid Dynamics
17. pwtk 217, 918 11, 524, 432 Structural Problem
18. shallow water1 81, 920 327, 680 Fluid Dynamics
19. torso3 259, 156 4, 429, 042 2D/3D Problem
20. venkat50 62, 424 1, 717, 777 Fluid Dynamics

Table 1: Properties of the test matrices.

As we have mentioned in Section 3, the sparsity structure of the triangular170

matrix is expected to have a significant influence on the performance of trian-
gular solvers. Therefore, for both PSTRSV and MKL, we experiment with five
well-known matrix reordering schemes. These are METIS [49, 50], Approximate
Minimum Degree Permutation (AMD) [51], Column Permutation (ColPerm of
Matlab R2018a), Nested Dissection Permutation (NDP) [52, 53], and Reverse175

Cuthill-McKee Ordering (RCM) [53]. After applying the permutation, we re-
move the strictly lower triangular part of the matrix to obtain U matrix. For
reorderings that require symmetric matrices, when we have an unsymmetric
test matrix A, we apply the reordering to the matrix AT +A, then the resulting
permutation is used on the original matrix, A. For all test problems, we use a180

random right hand side vector.
We use a computer with 2 sockets and 2 Intel(R) Xeon(R) CPU E5-2650

v3 processors each having 10 cores and 16 GB of memory. Threads are dis-
tributed using ”KMP AFFINITY = granularity = fine,compact,1,0”. Matrices
are stored in Compressed Sparse Row (CSR) format and the proposed solver185

is implemented using C programming language with OpenMP [56]. We repeat
each run 1, 000 times and obtain the average of the required wallclock time. Pre-
processing time excludes reordering time since it is common for both algorithms.

13

Algorithm 2 STRSV

Input: U matrix in CSR format and b, the right-hand side vector
Output: x, solution vector of Ux = b
x[n− 1] = b[n− 1]/u[iu[n− 1]]
for i = n− 2, n− 3, ..., 0 do
t = b[i]
for j = iu[i] + 1, iu[i] + 2, ..., iu[i+ 1]− 1 do
t := t− u[j] ∗ x[ju[j]]

end for
x[i] = t/u[iu[i]]

end for
return x

Figure 7: Overall performance comparison of the proposed solver, Intel MKL and the best
sequential solver. Bars indicate the number of test cases where the given solver outperforms
others. We ignore the test cases where we are unable to evaluate the performance due to
memory constraints.

14

Figure 8: The highest speed-ups achieved by the proposed solver and Intel MKL solver. {R:
RCM, C: ColPerm, N: NDP, M: METIS, A: AMD, O: ORIGINAL} symbols on bars indicate
the matrix reordering algorithms which give the best result. The thread counts are placed
under them.

For performance overview, we present the number of test cases where the fastest
solution is provided by a particular triangular solver in Figure 7. In a number190

of cases, we were not able to run solvers for a particular test matrix or its re-
ordered version due to memory constraints. Hence, we have only 6 cases where
we are able to measure the performance for all of the reorderings we mentioned
along with the original matrix using each thread count t ∈ {2, 4, 8, 10, 16, 20}.
For these 6 test cases, we present the speed-up curves in Figures 10, 11, 12,195

13, 14, and 15. However, we give the best speed-up achieved by PSTRSV and
MKL for all matrices in Figure 8. In this chart, we show only the best speed-up
achieved for a given test matrix as well as the matrix reordering and number of
threads being used to achieve the best speedup. The final residuals obtained by
PSTRSV are comparable with MKL.200

The speedup (s) is computed against the baseline sequential time. The
baseline is either our custom sequential sparse triangular solver implementation
(algorithm 2) or the sequential solver in Intel MKL whichever is the fastest for
the given problem;

s =
min(runtimecustom, runtimeMKL)

runtimeparallel
(34)

In general, PSTRSV provides the best speedup for most of the test cases. This
can be observed in Figure 7 where PSTRSV is better than others in 65% of the
test cases on average for t > 2. Furthermore, in Figure 8, we present the highest
performance improvements achieved for each of the 20 test matrices. PSTRSV
outperforms MKL in 80% of the test cases and is 2.3 times faster on average.205

15

Figure 9: The number of cases where the employed reordering algorithms get memory error.

Based on the results, PSTRSV benefits most from the parallelism provided by
NDP in 9/20 cases, METIS in 6/20 cases, and AMD in 3/20 cases. For the
other 2 cases, the original coefficient matrix gave the best results. ColPerm
and RCM, on the other hand, are not suitable for both PSTRSV and MKL.
We note that for all 20 test matrices, there is at least one reordering that210

does not fail as shown in Figure 8. Furthermore, in Figure 9, we depict the
cases and reordering methods for which the memory was not enough as the
number of partitions is increased. In our implementation, we use the same
number of threads as the number of partitions. As expected, the results show
that METIS partitioning is less prone to high memory consumption as it is a215

heuristic that directly attempts to minimize the number of off-diagonal entries
in the partitioned matrix while others do not have such objective. In addition,
although NDP may cause higher memory consumption than METIS for some
problems, considering the possibility of achieving a superior speedup with NDP
makes it also a favorable option for PSTRSV.220

Now, we look into those 6 cases where all reordering schemes work in more
detail. In Figure 10 (ct20stif), using NDP, METIS and AMD, PSTRSV out-
performs MKL by obtaining a speedup of ∼ 4×. Using RCM, ColPerm, and
ORIGINAL reorderings, MKL performs slightly better than PSTRSV, while the
speedup is poor (< 2). In Figure 11 (FEM 3D thermal1), for all methods the225

speedup is poor. PSTRSV outperforms MKL only in NDP case by reaching
∼ 2.5× speed-up. In Figure 12 (finan512), PSTRSV outperforms MKL in all
cases except ColPerm, where both perform poorly. The best speedup attained
by PSTRSV is ∼ 6. MKL consistently produces < 1 speedup for all cases. In
Figure 13 (pwtk), with NDP, METIS, and AMD, PSTRSV outperforms MKL230

by reaching a speedup of ∼ 3. Poor parallelism with RCM results in worse
performance than MKL which is able to reach ∼ 2× speed-up. In Figure 14
(shallow water1), PSTRSV achieves a good speedup regardless the reordering

16

Figure 10: The speed-up comparison for ct20stif

Figure 11: The speed-up comparison for FEM 3D thermal1

17

Figure 12: The speed-up comparison for finan512

Figure 13: The speed-up comparison for pwtk

18

Figure 14: The speed-up comparison for shallow water1

Figure 15: The speed-up comparison for venkat50

19

t
PSTRSV MKL

min max avg std min max avg std

2 1.19 37.83 13.52 9.65 4.11 251.50 78.77 60.23
4 2.28 2111.62 319.87 402.90 2.82 131.36 46.50 37.07
8 2.83 1167.28 227.06 256.19 2.17 114.80 32.89 27.84
10 2.99 824.10 197.22 210.96 2.58 118.37 31.32 27.63
16 3.03 762.25 192.87 201.35 0.19 115.57 27.41 22.40
20 3.07 770.03 188.94 199.06 0.44 264.46 35.85 35.65

Table 2: Statistics of the preprocessing times of PSTRSV and MKL in milliseconds where t
is the number of threads.

method. PSTRSV outperforms MKL in all cases by a factor of ∼ 4. For
venkat50 (Figure 15), using NDP, METIS, AMD, and ORIGINAL, PSTRSV235

outperforms MKL by reaching at most ∼ 5× speed-up. Again, poor parallelism
with RCM results in a worse performance than MKL which is able to reach
∼ 2× speedup.

So far, we have only looked into the solution time which excludes the pre-
processing time. Now, we study the required number of iterations to amortize240

the preprocessing time. First, we give some statistics of preprocessing times re-
quired by both PSTRSV and MKL in Table 2. Note that preprocessing stage of
PSTRSV is parallel which is reflected as a decrease in the average preprocessing
times in Table 2 as increasing the number of threads (t). When t = 2, r0 = 0
and k1 = 0 which results in a relatively low preprocessing time since there is245

no cost regarding R̄
(b)
densei

and S̄
(b)
densei

matrices as explained in Section 3.1. The
relatively high standard deviation in preprocessing times of PSTRSV indicates
that PSTRSV is more sensitive to sparsity structure than MKL. Even though
the cost of preprocessing for PSTRSV is relatively high, it can be amortized by
the fast triangular solution stage. In Table 3, we give the number of iterations250

required by the proposed algorithm to amortize the preprocessing time against
the best sequential solver. Note that, we only compute the required number of
iterations only for those cases where PSTRSV has a speed-up s > 1 since, oth-
erwise, it would require infinite amount of iterations. The parallelism available
in preprocessing stage also affects amortization positively. Consistent with the255

Table 2, average iteration count required for amortization drops as number of
threads are increased (for t > 2). In addition, we include the statistics of the
required iteration counts for the cases presented in Figure 8, where we show
the highest speed-ups achieved by the optimal settings. According to these re-
sults, PSTRSV is able to amortize the preprocessing times in approximately 40260

iterations on average when the best strategy is selected regarding the number
of threads and the reordering algorithm. Although, overall, MKL requires less
preprocessing time than PSTRSV, it cannot amortize the preprocessing time
in 21/120 test cases for any t ∈ {2, 4, 8, 10, 16, 20}, whereas PSTRSV cannot

20

t min max avg std

2 14 160 52.39 47.45
4 11 2326 292.46 394.37
8 10 1392 155.01 250.47
10 9 1589 98.29 207.90
16 9 429 85.98 86.75
20 9 1108 82.38 74.97

Cases in Fig 8 9 140 39.67 36.80

Table 3: Required iteration counts by PSTRSV for amortization of the preprocessing time
where t is the number of threads.

amortize the preprocessing time only in 9/120 test cases.265

5. Conclusions

In this paper, we presented a Spike based parallel sparse triangular linear
system solver. We defined the key performance parameters of the proposed
algorithm and analyzed their effect in terms of solution time. As test prob-
lems, we used matrices obtained from the SuiteSparse Matrix Collection that270

arise in real world applications and applied five well-known matrix reordering
schemes. Experimental results show that the proposed algorithm benefits from
METIS, AMD and NDP reorderings. The proposed algorithm outperforms par-
allel sparse triangular solver of Intel MKL 2018 on a multicore arhitecture.

References275

[1] D. Hysom, A. Pothen, A scalable parallel algorithm for incomplete factor
preconditioning, SIAM Journal on Scientific Computing 22 (6) (2001) 2194–
2215.

[2] S. Hutchinson, J. Shadid, R. Tuminaro, Aztec user’s guide. version 1, Tech.
rep. (oct 1995). doi:10.2172/135550.280

URL https://doi.org/10.2172/135550

[3] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, A. H. Sherman, Yale
sparse matrix package i: The symmetric codes, International Journal
for Numerical Methods in Engineering 18 (8) (1982) 1145–1151. doi:

10.1002/nme.1620180804.285

URL https://doi.org/10.1002/nme.1620180804

[4] X. S. Li, J. W. Demmel, Superlu dist: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM Transactions
on Mathematical Software (TOMS) 29 (2) (2003) 110–140.

21

https://doi.org/10.2172/135550
http://dx.doi.org/10.2172/135550
https://doi.org/10.2172/135550
https://doi.org/10.1002/nme.1620180804
https://doi.org/10.1002/nme.1620180804
https://doi.org/10.1002/nme.1620180804
http://dx.doi.org/10.1002/nme.1620180804
http://dx.doi.org/10.1002/nme.1620180804
http://dx.doi.org/10.1002/nme.1620180804
https://doi.org/10.1002/nme.1620180804

[5] R. D. Falgout, U. M. Yang, hypre: A library of high performance precondi-290

tioners, in: International Conference on Computational Science, Springer,
2002, pp. 632–641.

[6] O. Schenk, K. Gärtner, W. Fichtner, A. Stricker, Pardiso: a high-
performance serial and parallel sparse linear solver in semiconductor device
simulation, Future Generation Computer Systems 18 (1) (2001) 69–78.295

[7] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, et al., Petsc users manual
revision 3.8, Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United
States) (2017).

[8] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous300

multifrontal solver using distributed dynamic scheduling, SIAM Journal on
Matrix Analysis and Applications 23 (1) (2001) 15–41.

[9] T. A. Davis, I. S. Duff, An unsymmetric-pattern multifrontal method for
sparse lu factorization, SIAM Journal on Matrix Analysis and Applications
18 (1) (1997) 140–158.305

[10] S. Filippone, M. Colajanni, Psblas: A library for parallel linear algebra
computation on sparse matrices, ACM Transactions on Mathematical Soft-
ware (TOMS) 26 (4) (2000) 527–550.

[11] M. Joshi, G. Karypis, V. Kumar, A. Gupta, F. Gustavson, Pspases: An
efficient and scalable parallel sparse direct solver, in: In Proceedings of the310

Ninth SIAM Conference on Parallel Processing for Scientific Computing,
Citeseer, 1999.

[12] E. Anderson, Y. Saad, Solving sparse triangular linear systems on parallel
computers, International Journal of High Speed Computing 1 (01) (1989)
73–95.315

[13] J. H. Saltz, Aggregation methods for solving sparse triangular systems
on multiprocessors, SIAM Journal on Scientific and Statistical Computing
11 (1) (1990) 123–144.

[14] R. Schreiber, W.-P. Tang, Vectorizing the conjugate gradient method, Pro-
ceedings of the Symposium on CYBER 205 Applications.320

[15] M. Naumov, Parallel incomplete-lu and cholesky factorization in the pre-
conditioned iterative methods on the gpu, Tech. rep., NVIDIA Corp., West-
ford, MA, USA (2012).

[16] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, G. A. Constantinides,
Balancing locality and concurrency: solving sparse triangular systems on325

gpus, in: 2016 IEEE 23rd International Conference on High-Performance
Computing (HiPC), IEEE, 2016, pp. 183–192.

22

[17] R. Li, Y. Saad, Gpu-accelerated preconditioned iterative linear solvers, The
Journal of Supercomputing 63 (2) (2013) 443–466.

[18] J. Park, M. Smelyanskiy, N. Sundaram, P. Dubey, Sparsifying synchro-330

nization for high-performance shared-memory sparse triangular solver, in:
International Supercomputing Conference, Springer, 2014, pp. 124–140.

[19] M. M. Wolf, M. A. Heroux, E. G. Boman, Factors impacting performance
of multithreaded sparse triangular solve, in: International Conference on
High Performance Computing for Computational Science, Springer, 2010,335

pp. 32–44.

[20] E. Rothberg, A. Gupta, Parallel iccg on a hierarchical memory multiproces-
sor addressing the triangular solve bottleneck., Parallel Computing 18 (7)
(1992) 719 – 741.

[21] S. W. Hammond, R. Schreiber, Efficient iccg on a shared memory multi-340

processor, International Journal of High Speed Computing 4 (01) (1992)
1–21.

[22] X. Wang, W. Xue, W. Liu, L. Wu, swsptrsv: a fast sparse triangular solve
with sparse level tile layout on sunway architectures, in: Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel345

Programming, ACM, 2018, pp. 338–353.

[23] M. Naumov, P. Castonguay, J. Cohen, Parallel graph coloring with appli-
cations to the incomplete-lu factorization on the gpu, Tech. rep., NVIDIA
Corp., Westford, MA, USA (2015).

[24] B. Suchoski, C. Severn, M. Shantharam, P. Raghavan, Adapting sparse tri-350

angular solution to gpus, in: 2012 41st International Conference on Parallel
Processing Workshops, IEEE, 2012, pp. 140–148.

[25] T. Iwashita, H. Nakashima, Y. Takahashi, Algebraic block multi-color or-
dering method for parallel multi-threaded sparse triangular solver in iccg
method, in: Parallel & Distributed Processing Symposium (IPDPS), 2012355

IEEE 26th International, IEEE, 2012, pp. 474–483.

[26] S. Ma, Y. Saad, Distributed ilu(0) and sor preconditioners for unstructured
sparse linear systems, Tech. rep., Army High Performance Computing Re-
search Center (1994).

[27] D. P. Koester, S. Ranka, G. C. Fox, A parallel gauss-seidel algorithm for360

sparse power system matrices, in: Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, IEEE Computer Society Press, 1994, pp.
184–193.

[28] W. Liu, A. Li, J. Hogg, I. S. Duff, B. Vinter, A synchronization-free al-
gorithm for parallel sparse triangular solves, in: European Conference on365

Parallel Processing, Springer, 2016, pp. 617–630.

23

[29] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, K. A. Yelick,
Automatic performance tuning and analysis of sparse triangular solve, in:
In ICS 2002: Workshop on Performance Optimization via High-Level Lan-
guages and Libraries, 2002.370

[30] E. Chow, H. Anzt, J. Scott, J. Dongarra, Using jacobi iterations and
blocking for solving sparse triangular systems in incomplete factorization
preconditioning, Journal of Parallel and Distributed Computing 119 (2018)
219230. doi:10.1016/j.jpdc.2018.04.017.
URL http://www.sciencedirect.com/science/article/pii/375

S0743731518303034

[31] E. Totoni, M. T. Heath, L. V. Kale, Structure-adaptive parallel solution of
sparse triangular linear systems, Parallel Computing 40 (9) (2014) 454–470.

[32] J. Mayer, Parallel algorithms for solving linear systems with sparse trian-
gular matrices, Computing 86 (4) (2009) 291.380

[33] X. S. Li, Evaluation of sparse lu factorization and triangular solution on
multicore platforms, in: International Conference on High Performance
Computing for Computational Science, Springer, 2008, pp. 287–300.

[34] A. Pothen, F. L. Alvarado, A fast reordering algorithm for parallel sparse
triangular solution, SIAM journal on scientific and statistical computing385

13 (2) (1992) 645–653.

[35] B. Smith, H. Zhang, Sparse triangular solves for ilu revisited: data layout
crucial to better performance, The International Journal of High Perfor-
mance Computing Applications 25 (4) (2011) 386–391.

[36] K. Teranishi, P. Raghavan, E. Ng, A new data-mapping scheme for390

latency-tolerant distributed sparse triangular solution, in: Supercomput-
ing, ACM/IEEE 2002 Conference, IEEE, 2002, pp. 27–27.

[37] A. H. Sameh, R. P. Brent, Solving triangular systems on a parallel com-
puter, SIAM Journal on Numerical Analysis 14 (6) (1977) 1101–1113.

[38] S.-C. Chen, D. J. Kuck, A. H. Sameh, Practical parallel band triangu-395

lar system solvers, ACM Transactions on Mathematical Software (TOMS)
4 (3) (1978) 270–277.

[39] J. J. Dongarra, A. H. Sameh, On some parallel banded system solvers,
Parallel Computing 1 (3-4) (1984) 223–235.

[40] E. Polizzi, A. H. Sameh, A parallel hybrid banded system solver: the spike400

algorithm, Parallel computing 32 (2) (2006) 177–194.

[41] E. Polizzi, A. Sameh, Spike: A parallel environment for solving banded
linear systems, Computers & Fluids 36 (1) (2007) 113–120.

24

http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://dx.doi.org/10.1016/j.jpdc.2018.04.017
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034
http://www.sciencedirect.com/science/article/pii/S0743731518303034

[42] M. Manguoglu, A. H. Sameh, O. Schenk, Pspike: A parallel hybrid sparse
linear system solver, in: European Conference on Parallel Processing,405

Springer, 2009, pp. 797–808.

[43] O. Schenk, M. Manguoglu, A. Sameh, M. Christen, M. Sathe, Parallel scal-
able pde-constrained optimization: antenna identification in hyperthermia
cancer treatment planning, Computer Science-Research and Development
23 (3-4) (2009) 177–183.410

[44] M. Manguoglu, A domain-decomposing parallel sparse linear system solver,
Journal of Computational and Applied Mathematics 236 (3) (2011) 319–
325.

[45] M. Manguoglu, Parallel solution of sparse linear systems, in: High-
Performance Scientific Computing, Springer, 2012, pp. 171–184.415

[46] E. S. Bolukbasi, M. Manguoglu, A multithreaded recursive and nonrecur-
sive parallel sparse direct solver, in: Advances in Computational Fluid-
Structure Interaction and Flow Simulation, Springer, 2016, pp. 283–292.

[47] I. E. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, A. H. Sameh, A direct
tridiagonal solver based on givens rotations for gpu architectures, Parallel420

Computing 49 (2015) 101–116.

[48] K. Mendiratta, E. Polizzi, A threaded spike algorithm for solving general
banded systems, Parallel Computing 37 (12) (2011) 733–741.

[49] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, SIAM Journal on Scientific Computing 20 (1)425

(1998) 359–392.

[50] G. Karypis, V. Kumar, A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering, Journal of Parallel and Distributed
Computing 48 (1) (1998) 71–95.

[51] P. R. Amestoy, T. A. Davis, I. S. Duff, An approximate minimum degree430

ordering algorithm, SIAM Journal on Matrix Analysis and Applications
17 (4) (1996) 886–905.

[52] A. George, Nested dissection of a regular finite element mesh, SIAM Journal
on Numerical Analysis 10 (2) (1973) 345–363.

[53] A. George, J. W. Liu, Computer Solution of Large Sparse Positive Definite435

Systems, Prentice Hall Professional Technical Reference, 1981.

[54] Intel math kernel library. reference manual, Tech. rep., Intel Corporation,
Santa Clara, USA (2018).
URL https://software.intel.com/en-us/mkl

[55] T. A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM440

Transactions on Mathematical Software (TOMS) 38 (1) (2011) 1.

25

https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl

[56] L. Dagum, R. Menon, Openmp: an industry standard api for shared-
memory programming, IEEE Computational Science and Engineering 5 (1)
(1998) 46–55.

26

	Introduction
	Algorithm
	Performance constraints
	Preprocessing
	Solution

	Numerical results
	Conclusions

