A Parallel Multithreaded Sparse Triangular Linear System Solver

İlke Çuğu, Murat Manguoğlu
Department of Computer Engineering Middle East Technical University

$$
\text { 21.12.2019 - HPCA } 2019
$$

Outline

(1) Motivation
(2) Taxonomy of the Parallel Sparse Triangular System Solvers
(3) The Algorithm
4) Performance Constraints

- Preprocessing
- Solution
(5) Numerical Experiments
- Overall Performance Comparison
- Case Study
(6) Conclusion and Future Work

Motivation

Sparse linear systems are found in many applications of science and engineering:

- Electromagnetics, circuit simulations, computational fluid dynamics, etc.

Sparse triangular systems arise in...

- Sparse matrix factorizations such as LU, QR, Cholesky, etc.
- Iterative solvers such as Gauss-Seidel, Successive Over Relaxations (SOR), Symmetric SOR, etc.

Parallel Sparse Triangular System Solvers

- Level-scheduling
- Self-scheduling
- Graph coloring
- Block partitioning and decoupling
- The proposed algorithm

The Algorithm - Origins

The Spike algorithm...

- was originally designed for general ${ }^{1}$ and triangular ${ }^{2}$ banded systems
- was generalized for general sparse systems ${ }^{3}$
- is expanded and specialized for sparse triangular case by the proposed algorithm

[^0]
The Algorithm - The Original System

- The proposed algorithm is applicable to lower triangular case as well

The Algorithm - Splitting U Matrix

we multiply both sides of the original system $U x=b$ with D^{-1}

$$
\underbrace{D^{-1} U}_{\text {Spike matrix }} x=\underbrace{D^{-1} b}_{g}
$$

The Algorithm - Structure of the Spike Matrix

The Algorithm - The Reduced System

Construction of the reduced system

- \widehat{S} is a $d \times d$ unit diagonal triangular matrix
- Solution of the reduced system requires $\mathcal{O}(n n z(\widehat{S})-d)$ operations

The Algorithm - Dependency Elements Metaphor

The illustration of light beams as dependency mappings

The Algorithm - Preprocessing

Preprocessing phase covers operations independent from the right hand side vector b :

- Partitioning D matrix
- Memory allocation for dense R and S parts
- Compressing R into a dense form
- Computing the partial S matrix
- Load-balance optimization for the parallel blocks

The Algorithm - Solution

```
Algorithm 1 PSTRSV
    Input: Partitioned and factored coefficient matrix \(U=D S\), reduced coeffi-
    cient matrix \(\hat{S}\), together with associated dependency information and \(b\), the
    right-hand side vector
    Output: \(x\), solution vector of \(U x=b\)
    for each thread \(i=1,2, \ldots, t\) do
        if hasReflection \({ }_{i}\) or isOptimized \(_{i}\) then
            Solve the triangular system \(D_{i}^{(m ; b)} g_{i}^{(m ; b)}=b_{i}^{(m ; b)}\) for \(g_{i}^{(m ; b)}\)
        end if
            Wait until all threads reach this point
            for a single thread \(i\) do
        Solve the reduced system \(\widehat{S} \widehat{x}=\widehat{g}\) for \(\widehat{x}\)
        Update the solution vector \(x \leftarrow \widehat{x}\)
        end for
        Wait until all threads reach this point
        if hasDependence \(i_{i}\) then
            \(b_{i}^{(t ; m)}:=b_{i}^{(t ; m)}-\left(\hat{R}_{i} x+P_{i} x_{i}^{(b)}\right)\)
        end if
        if hasReflection \({ }_{i}\) or isOptimized \(_{i}\) then
            Solve the triangular system \(D_{i}^{(t ; m)} x_{i}^{(t ; m)}=b_{i}^{(t ; m)}\) for \(x_{i}^{(t ; m)}\)
        else
            Solve the triangular system \(D_{i} x_{i}=b_{i}\) for \(x_{i}\)
        end if
    end for
    return \(x\)
```


Performance Constraints - Preprocessing

We only need to compute S matrix parts highlighted in red

Performance Constraints - $\bar{R}_{i}^{(b)}$ to $\bar{R}_{d e}^{(b)}$

We transform the sparse $\bar{R}_{i}^{(b)}$ matrix to dense $\bar{R}_{\text {dense }}(b)$ matrix

Performance Constraints - Computing $\bar{S}_{\text {dense }}^{(b)}$

Then, $\bar{R}_{\text {dense }_{i}}^{(b)}$ is used as the right hand side to compute $\bar{S}_{\text {dense }_{i}}^{(b)}$

Performance Constraints - Key Parameters

Two of the key performance parameters

- reflection r_{i} : Row index of the top-most light beam for each R_{i}
- k_{i} : Row index of the bottom-most dependency element for each R_{i}
- $n n z(\widehat{S})-d$: \# of off-diagonal nonzeros in \widehat{S}

Performance Constraints - Solution

Ideal scenarios:

- for $d_{i}=0, \forall i \in\{1,2, \ldots, t\}$ there is no reduced system
- for $r_{i}>k_{i}, \forall i \in\{1,2, \ldots, t\}, \widehat{S}$ is the identity matrix

Numerical Experiments - Environment

Hardware:

- 2 sockets
- in each an Intel(R) Xeon(R) CPU E5-2650 v3 processor
- 10 cores per processor (20 cores in total)
- 16 GB of memory

Software:

- Matrices are in Compressed Sparse Row (CSR) format
- Intel Math Kernel Library (MKL) 2018 is used
- PSTRSV is implemented in C with OpenMP
- KMP_AFFINITY $=$ granularity $=$ fine,compact, 1,0

Numerical Experiments

In the experiments...

- 20 real world matrices are taken from SuiteSparse Matrix Collection
- METIS, Approximate Minimum Degree (AMD), ColPerm, Nested Dissection Permutation (NDP) and Reverse Cutthill-Mckee (RCM) orderings are used
- comparisons are done against a state-of-the-art multithreaded sparse triangular solver implementation in Intel Math Kernel Library (MKL) 2018
- each run is repeated 1,000 times and the average wallclock times are reported

Numerical Experiments - Solution

Overall performance comparison

Numerical Experiments - Solution

The highest speed-ups achieved by PSTRSV and MKL

- PSTRSV cannot amortize the preprocessing overhead in 9/120 cases
- MKL cannot amortize the preprocessing overhead in 21/120 cases

Numerical Experiments - Preprocessing

t	PSTRSV				MKL			
	min	\max	avg	std	\min	\max	avg	std
2	1.19	37.83	13.52	9.65	4.11	251.50	78.77	60.23
4	2.28	2111.62	319.87	402.90	2.82	131.36	46.50	37.07
8	2.83	1167.28	227.06	256.19	2.17	114.80	32.89	27.84
10	2.99	824.10	197.22	210.96	2.58	118.37	31.32	27.63
16	3.03	762.25	192.87	201.35	0.19	115.57	27.41	22.40
20	3.07	770.03	188.94	199.06	0.44	264.46	35.85	35.65

Statistics of the preprocessing times of PSTRSV and MKL in milliseconds

- $t=2$ is a special condition where $r_{0}=0$ and $k_{1}=0\left(\right.$ no $\bar{R}_{i}^{(b)}$ or $\left.\bar{S}_{i}^{(b)}\right)$

finan512

Portfolio optimization, 512 scenarios, Ed Rothberg, SGI, John Mulvey, Princeton. ${ }^{4}$

${ }^{4}$ The matrix and problem descriptions are obtained from: https://www.cise.ufl.edu/research/sparse/matrices/Mulvey/finan512.html

finan512 - Preprocessing time

finan512 - Solution time speedup

shallow water1

Weather shallow water equations from the Max-Plank Institute of Meteorology. ${ }^{5}$

${ }^{5}$ The matrix and problem descriptions are obtained from: https://www.cise.ufl. edu/research/sparse/matrices/MaxPlanck/shallow_water1.html

shallow water1 - Preprocessing time

shallow_water1 - Solution time speedup

venkat50

Unstructured 2D Euler solver, V. Venkatakrishnan NASA, Timestep $=50 .{ }^{6}$

${ }^{6}$ The matrix and problem descriptions are obtained from: https://www.cise.ufl.edu/research/sparse/matrices/Simon/venkat50.html

venkat50 - Preprocessing time

venkat50 - Solution time speedup

Numerical Experiments - Matrix Reordering

The number of cases where the employed reordering algorithms get memory error

Summary

spike_pstrsv...

- is implemented in C with OpenMP
- benefits from METIS, AMD and NDP orderings
- is tested with matrices taken from SuiteSparse Matrix Collection
- outperforms MKL in $\sim 80 \%$ of cases by a factor of 2.47 on average
- achieves best speed-ups with..
- 9/20 cases: NDP
- 6/20 cases: METIS
- 3/20 cases: AMD
- 2/20 cases: Original
- is released under MIT license at GitHub ${ }^{7}$

[^1]
[^0]: ${ }^{1}$ Ahmed H Sameh and David J Kuck. "On stable parallel linear system solvers". In: Journal of the ACM (JACM) 25.1 (1978), pp. 81-91.
 ${ }^{2}$ A. Sameh and R. Brent. "Solving Triangular Systems on a Parallel Computer". In: SIAM Journal on Numerical Analysis 14.6 (1977), pp. 1101-1113.
 ${ }^{3}$ Ercan Selcuk Bolukbasi and Murat Manguoglu. "A multithreaded recursive and nonrecursive parallel sparse direct solver". In: Advances in Computational Fluid-Structure Interaction and Flow Simulation. Springer, 2016, pp. 283-292.

[^1]: ${ }^{7}$ https://github.com/cuguilke/spike_pstrsv

