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Facial Expression Recognition

Automatic recognition of basic emotions

Anger, contempt, disgust, fear, happy, sadness, surprise

Datasets:

CK+ 1

Oulu-CASIA 2

1Lucey, Patrick, et al. ”The extended cohn-kanade dataset (ck+): A complete
dataset for action unit and emotion-specified expression.” 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition-Workshops. IEEE, 2010.

2Zhao, Guoying, et al. ”Facial expression recognition from near-infrared videos.”
Image and Vision Computing 29.9 (2011): 607-619.
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Model Family

2 conv layers (conv1, conv2)

2 fully-connected layers (fc1, fc2)

Rectified linear units (ReLU)3 as activation functions.

Most of the parameters are at fully-connected layers

Grid search to test size/performance trade-off

3Nair, Vinod, and Geoffrey E. Hinton. ”Rectified linear units improve restricted
boltzmann machines.” Proceedings of the 27th international conference on machine
learning (ICML-10). 2010.
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Max pooling vs. No pooling

Facial expressions are located mostly on eyes and mouth 4

Hypothesis: max-pooling layers hurt the performance of a FER model
as the expressions are sensitive to small, pixel-wise changes around
the eye and the mouth.

FAILED
However, testing environment shapes the problem definition
(memorization vs. learning)
Specifically, for train/val/test set separation:

If random split, YES
If subject-independent split, NO

4Ekman, Rosenberg. What the face reveals: Basic and applied studies of
spontaneous expression using the Facial Action Coding System (FACS). Oxford
University Press, USA, 1997.
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Notation

v : no pooling layer

p1: only one max pooling layer after conv1

p2: only one max pooling layer after conv2

p12: each conv layer is followed by a max pooling layer
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Train/Val/Test Set Separation

Random split

Model may see images of the same subject both in training & testing

Images are numerically different, but visually very similar

No pooling gives the best result for XS and XXS models

Q: Does preserving the pixel information ease memorization?
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Train/Val/Test Set Separation

Subject-independent split

Model trains with a set of subjects s1

It is tested with another set of subjects s2

where s1 ∩ s2 = ∅
Having 2 max-pooling gives the best result for XS and XXS models

Q: Does information loss improve generalization?
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MicroExpNet Architecture

The final architecture with max-pooling layers
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Model size and speed

Memory requirements and average per-image running times
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Recap: Knowledge Distillation 5

Let pt and p′s be the softened softmax of the student and teacher
respectively whereas ps is the vanilla softmax of the student:

pt =
ezi/T∑
j e

zj/T
, p′s =

evi/T∑
j e

vj/T
, ps =

evi∑
j e

vj
(1)

Then the cost function becomes:

L = λ(
1

N

N∑
n=1

H(pt , p
′
s)) + (1− λ)(

1

N

N∑
n=1

H(y , ps)). (2)

5Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. ”Distilling the knowledge in a neural
network.” arXiv preprint arXiv:1503.02531 (2015).

İlke Çuğu, Eren Şener, Emre Akbaş (METU CENG) MicroExpNet IPTA 2019 11 / 20



Teacher and Student Models

TeacherExpNet: Inception v3 6 network trained on ImageNet7

StudentExpNet:

p12: each conv layer is followed by a max pooling layer
M, S, XS, XXS

6Szegedy, Christian, et al. ”Rethinking the inception architecture for computer
vision.” Proceedings of the IEEE conference on computer vision and pattern recognition.
2016.

7Russakovsky, Olga, et al. ”Imagenet large scale visual recognition challenge.”
International journal of computer vision 115.3 (2015): 211-252.
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Regularization on CK+ Performance

The effect of supervision on CK+ for 3000 epochs of training
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Regularization on Oulu-CASIA Performance

The effect of supervision on Oulu-CASIA for 3000 epochs of training
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Temperature Analysis

Grid search for temperatures: T ∈ [2, 4, 8, 16, 20, 32, 64]

Random split vs. subject-independent split
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Temperature Analysis using CK+

Classification performances of the student networks across different
temperatures on the CK+ dataset using subject-independent splits
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Temperature Analysis using CK+

Classification performances of the student networks across different
temperatures on the CK+ dataset using random splits
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Temperature Analysis using Oulu-CASIA

Classification performances of the student networks across different
temperatures on the Oulu-CASIA dataset using subject-independent

splits
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Temperature Analysis using Oulu-CASIA

Classification performances of the student networks across different
temperatures on the Oulu-CASIA dataset using random splits
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Future Research Directions

Is information loss essential for generalization?

Is a smaller model more open to teacher’s supervision?

Why does the classification accuracy fluctuate as the temperature T
is changed?
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