# MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images

İlke Çuğu, Eren Şener, Emre Akbaş

Department of Computer Engineering Middle East Technical University

IPTA 2019

# Outline

### 1 Introduction

### 2 Search for a Compact FER Model

- Architecture: Max pooling vs. No pooling
- Dataset: Random split vs. Subject-independent split
- Performance: Model size and speed

### Knowledge Distillation for FER

- Regularization: Model size vs. Teacher's Supervision
- Hyperparameters: Temperature Analysis

### 4 Future Research Directions

- Automatic recognition of basic emotions
- Anger, contempt, disgust, fear, happy, sadness, surprise
- Datasets:
  - CK+ <sup>1</sup>
  - Oulu-CASIA <sup>2</sup>

. İlke Çuğu, Eren Şener, Emre Akbaş (METU

<sup>&</sup>lt;sup>1</sup>Lucey, Patrick, et al. "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression." 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. IEEE, 2010.

<sup>&</sup>lt;sup>2</sup>Zhao, Guoying, et al. "Facial expression recognition from near-infrared videos." Image and Vision Computing 29.9 (2011): 607-619.

| Model | # of neurons<br>in <i>fc1</i> |  |  |  |
|-------|-------------------------------|--|--|--|
| М     | 256                           |  |  |  |
| S     | 64                            |  |  |  |
| XS    | 32                            |  |  |  |
| XXS   | 16                            |  |  |  |

- 2 conv layers (conv1, conv2)
- 2 fully-connected layers (fc1, fc2)
- Rectified linear units (ReLU)<sup>3</sup> as activation functions.
- Most of the parameters are at fully-connected layers
- Grid search to test size/performance trade-off

İlke Çuğu, Eren Şener, Emre Akbaş (METU

<sup>&</sup>lt;sup>3</sup>Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." Proceedings of the 27th international conference on machine learning (ICML-10). 2010.

- Facial expressions are located mostly on eyes and mouth <sup>4</sup>
- Hypothesis: max-pooling layers hurt the performance of a FER model as the expressions are sensitive to small, pixel-wise changes around the eye and the mouth.
  - FAILED
  - However, testing environment shapes the problem definition (memorization vs. learning)
  - Specifically, for train/val/test set separation:
    - If random split, YES
    - If subject-independent split, NO

İlke Çuğu, Eren Şener, Emre Akbaş (METU

<sup>&</sup>lt;sup>4</sup>Ekman, Rosenberg. What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS). Oxford University Press, USA, 1997.

- v: no pooling layer
- p1: only one max pooling layer after conv1
- p<sub>2</sub>: only one max pooling layer after conv2
- $p_{12}$ : each conv layer is followed by a max pooling layer

|        | Model                                                       | CK+                                          | Oulu-CASIA                                   | Model                                                                        | CK+                                          | Oulu-CASIA                                   |
|--------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Random | $\begin{array}{c} v_M \\ p1_M \\ p2_M \\ p12_M \end{array}$ | 97.93%<br><b>97.99</b> %<br>97.41%<br>97.39% | 97.68%<br><b>97.79</b> %<br>96.64%<br>97.47% | $\begin{vmatrix} v_{XS} \\ p1_{XS} \\ p2_{XS} \\ p12_{XS} \end{vmatrix}$     | <b>93.41</b> %<br>91.85%<br>86.84%<br>88.07% | <b>88.73</b> %<br>80.16%<br>77.88%<br>77.04% |
|        | $\begin{array}{c} v_S \\ p1_S \\ p2_S \\ p12_S \end{array}$ | 96.65%<br><b>96.73</b> %<br>94.09%<br>94.39% | 92.95%<br><b>93.22</b> %<br>88.61%<br>88.72% | $\begin{vmatrix} v_{XXS} \\ p_{1XXS} \\ p_{2XXS} \\ p_{12XXS} \end{vmatrix}$ | <b>81.91</b> %<br>69.05%<br>77.74%<br>78.52% | <b>73.64</b> %<br>52.99%<br>66.84%<br>61.71% |

#### Random split

- Model may see images of the same subject both in training & testing
- Images are numerically different, but visually very similar
- No pooling gives the best result for XS and XXS models
- Q: Does preserving the pixel information ease memorization?

|                     | Model                                                           | CK+                                          | Oulu-CASIA                                   | Model                                                                         | CK+                                          | Oulu-CASIA                                   |
|---------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Subject-independent | $\begin{array}{c} v_M \\ p 1_M \\ p 2_M \\ p 1 2_M \end{array}$ | 81.23%<br><b>81.57</b> %<br>78.77%<br>79.95% | 60.87%<br><b>62.46</b> %<br>60.21%<br>60.53% | $\begin{vmatrix} v_{XS} \\ p1_{XS} \\ p2_{XS} \\ p12_{XS} \end{vmatrix}$      | 77.14%<br>77.14%<br>78.42%<br><b>79.78</b> % | 53.73%<br>53.41%<br>57.51%<br><b>57.54</b> % |
|                     | $\begin{array}{c} v_S \\ p 1_S \\ p 2_S \\ p 1 2_S \end{array}$ | 79.73%<br><b>81.25</b> %<br>78.75%<br>79.71% | 58.18%<br><b>59.49</b> %<br>57.37%<br>57.25% | $ \begin{array}{c} v_{XXS} \\ p_{1XXS} \\ p_{2XXS} \\ p_{12XXS} \end{array} $ | 71.36%<br>67.04%<br>76.91%<br><b>78.44</b> % | 44.33%<br>34.04%<br>54.62%<br><b>55.03</b> % |

#### Subject-independent split

- Model trains with a set of subjects s<sub>1</sub>
- It is tested with another set of subjects s<sub>2</sub>
- where  $s_1 \cap s_2 = \emptyset$
- Having 2 max-pooling gives the best result for XS and XXS models
- Q: Does information loss improve generalization?

# **MicroExpNet Architecture**



The final architecture with max-pooling layers

| Model                                   | # of<br>params   | Size<br>(MB) | i7-7700HQ | GTX1050         | Tesla K40        |
|-----------------------------------------|------------------|--------------|-----------|-----------------|------------------|
| TeacherExpNet                           | 21.8M            | 88.13        | 124.22 ms | 83.25 ms        | -                |
| FN2EN [2]                               | 11 <b>M</b>      | 42.42        | 96.08 ms  | 23.81  ms       | 13.09 ms         |
| PPDN [1]                                | 6M               | 23.93        | 57.18  ms | 9.12 ms         | 13.11 ms         |
| StudentExpNet <sub><math>M</math></sub> | 900K             | 10.88        | 0.89 ms   | $1.13  { m ms}$ | 1.74  ms         |
| StudentExpNet <sub>S</sub>              | 232K             | 2.91         | 0.78  ms  | 1.08  ms        | $1.69  {\rm ms}$ |
| StudentExpNet <sub>XS</sub>             | $121 \mathrm{K}$ | 1.52         | 0.63  ms  | 0.97  ms        | $1.63  { m ms}$  |
| MicroExpNet                             | 65K              | 0.88         | 0.53 ms   | 0.97 ms         | 1.52 ms          |

Memory requirements and average per-image running times

Let  $p_t$  and  $p'_s$  be the softened softmax of the student and teacher respectively whereas  $p_s$  is the vanilla softmax of the student:

$$p_t = rac{e^{z_i/T}}{\sum_j e^{z_j/T}}, \quad p'_s = rac{e^{v_i/T}}{\sum_j e^{v_j/T}}, \quad p_s = rac{e^{v_i}}{\sum_j e^{v_j}}$$
 (1)

Then the cost function becomes:

$$\mathcal{L} = \lambda \left(\frac{1}{N} \sum_{n=1}^{N} \mathcal{H}(p_t, p_s')\right) + (1 - \lambda) \left(\frac{1}{N} \sum_{n=1}^{N} \mathcal{H}(y, p_s)\right).$$
(2)

<sup>5</sup>Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

İlke Çuğu, Eren Şener, Emre Akbaş (METU

MicroExpNet

- $\bullet$  TeacherExpNet: Inception\_v3  $^6$  network trained on ImageNet^7
- StudentExpNet:
  - $p_{12}$ : each conv layer is followed by a max pooling layer
  - M, S, XS, XXS

. İlke Çuğu, Eren Şener, Emre Akbaş (METU

<sup>&</sup>lt;sup>6</sup>Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

<sup>&</sup>lt;sup>7</sup>Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International journal of computer vision 115.3 (2015): 211-252.

# **Regularization on CK+ Performance**



The effect of supervision on CK+ for 3000 epochs of training

# **Regularization on Oulu-CASIA Performance**



The effect of supervision on Oulu-CASIA for 3000 epochs of training

- Grid search for temperatures:  $T \in [2, 4, 8, 16, 20, 32, 64]$
- Random split vs. subject-independent split

# Temperature Analysis using CK+



Classification performances of the student networks across different temperatures on the CK+ dataset using **subject-independent splits** 

# Temperature Analysis using CK+



Classification performances of the student networks across different temperatures on the CK+ dataset using **random splits** 

# **Temperature Analysis using Oulu-CASIA**



Classification performances of the student networks across different temperatures on the Oulu-CASIA dataset using **subject-independent splits** 

# **Temperature Analysis using Oulu-CASIA**



Classification performances of the student networks across different temperatures on the Oulu-CASIA dataset using **random splits** 

- Is information loss essential for generalization?
- Is a smaller model more open to teacher's supervision?
- Why does the classification accuracy fluctuate as the temperature T is changed?