
Parallel Solution of Sparse Triangular Linear
Systems on Multicore Platforms

İlke Çuğu

Department of Computer Engineering
Middle East Technical University

23/11/2018

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 1 / 27



Outline

1 Motivation

2 Taxonomy of the Parallel Sparse Triangular System Solvers

3 The Algorithm

4 Performance Constraints
Preprocessing
Solution

5 Numerical Experiments
Overall Performance Comparison
Case Study

6 Conclusion and Future Work

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 2 / 27



Motivation

Sparse linear systems are found in many applications of science and
engineering:

Electromagnetics, circuit simulations, computational fluid dynamics,
etc.

Sparse triangular systems arise in...

Sparse matrix factorizations such as LU, QR, Cholesky, etc.

Iterative solvers such as Gauss-Seidel, Successive Over Relaxations
(SOR), Symmetric SOR, etc.

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 3 / 27



Parallel Sparse Triangular System Solvers

Level-scheduling based methods

Self-scheduling based methods

Graph coloring based methods

Block diagonal based methods

The proposed algorithm

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 4 / 27



The Algorithm - Origins

The Spike algorithm...

is originally designed for banded systems

is generalized for general sparse systems

is expanded and specialized for sparse triangular case by the
proposed algorithm

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 5 / 27



The Algorithm - The Original System

Ux = b

The proposed algorithm is applicable to lower triangular case as well

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 6 / 27



The Algorithm - Structure of the Spike Matrix

Sx = g

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 7 / 27



The Algorithm - Splitting U Matrix

D + R = U

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 8 / 27



The Algorithm - Dependency Elements Metaphor

The illustration of light beams as dependency mappings

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 9 / 27



The Algorithm - The Reduced System

Construction of the reduced system

Ŝ is a d × d unit diagonal triangular matrix

Solution of the reduced system requires O(nnz(Ŝ)− d) operations

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 10 / 27



The Algorithm - Preprocessing

Preprocessing phase covers operations independent from the right hand
side vector b:

Partitioning D matrix

Memory allocation for dense R and S parts

Compressing R into a dense form

Computing the partial S matrix

Load-balance optimization for the parallel blocks

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 11 / 27



The Algorithm - Solution

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 12 / 27



Performance Constraints - Key Parameters

Two of the key performance parameters

reflection ri : Row index of the top-most light beam for each Ri

ki : Row index of the bottom-most dependency element for each Ri

nnz(Ŝ)− d : # of off-diagonal nonzeros in Ŝ

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 13 / 27



Performance Constraints - Preprocessing

We only need to compute S matrix parts highlighted in red

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 14 / 27



Performance Constraints - R̄
(b)
i to R̄

(b)
densei

We transform the sparse R̄
(b)
i matrix to dense R̄

(b)
densei

matrix

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 15 / 27



Performance Constraints - Computing S̄
(b)
densei

Solution of a sparse triangular system with multiple right hand side vectors

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 16 / 27



Performance Constraints - Solution

Ideal scenarios:

for di = 0,∀i ∈ {1, 2, ..., t} there is no reduced system

for ri > ki , ∀i ∈ {1, 2, ..., t}, Ŝ is the identity matrix

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 17 / 27



Numerical Experiments - Environment

Hardware:

2 sockets

in each an Intel(R) Xeon(R) CPU E5-2650 v3 processor

10 cores per processor (20 cores in total)

16 GB of memory

Software:

Matrices are in Compressed Sparse Row (CSR) format

Intel Math Kernel Library (MKL) 2018 is used

PSTRSV is implemented in C with OpenMP

KMP AFFINITY = granularity = fine,compact,1,0

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 18 / 27



Numerical Experiments

In the experiments...

20 real world matrices are taken from SuiteSparse Matrix Collection

METIS, AMD, ColPerm, NDP and RCM orderings are employed

multithreaded sparse triangular solver of Intel MKL 2018 is used

each run is repeated 1,000 times and to obtain the avg wallclock time

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 19 / 27



Numerical Experiments - Solution

Overall performance comparison

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 20 / 27



Numerical Experiments - Solution

The highest speed-ups achieved by PSTRSV and MKL

PSTRSV cannot amortize the preprocessing overhead in 9/120 cases

MKL cannot amortize the preprocessing overhead in 21/120 cases

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 21 / 27



Numerical Experiments - Closer Look

The illustration of finan512 for different matrix reorderings

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 22 / 27



Numerical Experiments - Closer Look

The speed-up comparison for finan512

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 23 / 27



Numerical Experiments - Closer Look

The preprocessing time comparison for finan512

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 24 / 27



Numerical Experiments - Preprocessing

Statistics of the preprocessing times of PSTRSV and MKL in milliseconds

t = 2 is a special condition where r0 = 0 and k1 = 0 (no R̄
(b)
i or S̄

(b)
i )

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 25 / 27



Summary

PSTRSV...

is implemented in C with OpenMP

benefits from METIS, AMD and NDP orderings

is tested with matrices taken from SuiteSparse Matrix Collection

outperforms MKL in ∼ 80% of cases by a factor of 2.3 on average

achieves best speed-ups with..

9/20 cases: NDP
6/20 cases: METIS
3/20 cases: AMD
2/20 cases: Original

is submitted to Journal of Parallel and Distributed Computing
(in review)

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 26 / 27



Future Work

Investigation on

further optimization in the preprocessing phase

other matrix ordering frameworks such as PaToH

a specialized graph partitioning algorithm tailored for PSTRSV

an MPI implementation of the proposed algorithm

İlke Çuğu (METU CENG) PSTRSV 23/11/2018 27 / 27


	Motivation
	Taxonomy of the Parallel Sparse Triangular System Solvers
	The Algorithm
	Performance Constraints
	Preprocessing
	Solution

	Numerical Experiments
	Overall Performance Comparison
	Case Study

	Conclusion and Future Work

